martes, 15 de septiembre de 2015

Límite 

En matemática, el concepto de límite es una noción topológica que formaliza la noción intuitiva de aproximación hacia un punto concreto de una sucesión o una función, a medida que los parámetros de esa sucesión o función se acercan a determinado valor.
En cálculo infinitesimal (especialmente en análisis real y matemático) este concepto se utiliza para definir los conceptos fundamentales de convergenciacontinuidadderivación,integración, entre otros. Si bien, el concepto de límite parece intuitivamente relacionado con el concepto de distancia, en un espacio euclídeo, es la clase de conjuntos abiertosinducidos por dicha métrica, lo que permite definir rigurosamente la noción de límite.
El concepto se puede generalizar a otros espacios topológicos, como pueden ser las redes topológicas; de la misma manera, es definido y utilizado en otras ramas de la matemática, como puede ser la teoría de categorías.

Límite de una función


Visualización en un sistema decoordenadas cartesianas de los parámetros utilizados en la definición de límite.
En análisis real para funciones de una variable, se puede hacer una definición de límite similar a la de límite de una sucesión, en la cual, los valores que toma la función dentro de un intervalo o radio de convergencia se van aproximando a un punto fijado c, independientemente de que éste pertenezca al dominio de la función. El punto c es punto de acumulación del dominio de la función.1Esto se puede generalizar aún más a funciones de varias variables o funciones en distintos espacios métricos.
Informalmente, se dice que el límite de la función f(x) es L cuando x tiende a c, y se escribe:
 \lim_{x\to c} \, \, f(x) = L
si se puede encontrar para cada ocasión un x suficientemente cerca de c tal que el valor de f(x) sea tan próximo a L como se desee.
Para un mayor rigor matemático se utiliza la definición épsilon-delta de límite, que es más estricta y convierte al límite en una gran herramienta del análisis real. Su definición es la siguiente:
"El límite de f(x) cuando x tiende a c es igual a L si y sólo si para todo número real ε mayor que cero existe un número real δ mayor que cero tal que si la distancia entre x y c es menor que δ, entonces la distancia entre la imagen de x y L es menor que ε unidades".
Esta definición, se puede escribir utilizando términos lógico-matemáticos y de manera compacta:

   \begin{array}{l}
      \underset {x\to c}{\lim} \, \, f(x) = L \iff  \forall \varepsilon > 0 \ \ \exists \ \delta > 0 / 0<|x-c|<\delta \longrightarrow |f(x)-L|<\varepsilon
   \end{array}
Esta definición es equivalente al límite de una sucesión, una función es continua si:
\lim_{n\to \infty} x_n = c \Rightarrow \lim_{n\to \infty} f(x_n) = f(c)
Para la función f(x) = x2 - 9/ x - 3 se tiene límite en el punto 3, que no está en el dominio, cuando los valores del dominio se acercan a 3, los valores de la función se aproximan a 6. 3 es un punto de acumulación de Df2
figura de pentágono 


figura  de  octágono 



figura  decagono 









figura de dodecagono 







figuras de limites  por izquierda y derecha 





No hay comentarios.:

Publicar un comentario